Em qualquer junção P-N polarizada diretamente, dentro da estrutura, próximo à junção, ocorrem recombinações de lacunas e elétrons. Essa recombinação exige que a energia possuída elétrons, que até então era livre, seja liberada, o que ocorre na forma de calor ou fótons de luz .
No silício e no germânio, que são os elementos básicos dos diodos e transistores, entre outros componentes electrônicos, a maior parte da energia é liberada na forma de calor, sendo insignificante a luz emitida (devido a opacidade do material), e os componentes que trabalham com maior capacidade de corrente chegam a precisar de irradiadores de calor (dissipadores) para ajudar na manutenção dessa temperatura em um patamar tolerável.
Já em outros materiais, como o arsenieto de gálio (GaAs) ou o fosfeto de gálio (GaP), o número de fotons de luz emitido é suficiente para constituir fontes de luz bastante eficientes.
Os semicondutores também podem ser do tipo compensados, isto é, possuem ambos os dopantes (P e N). Neste caso, o dopante em maior concentração determinará a que tipo pertence o semicondutor. Por exemplo, se existem mais dopantes que levariam ao P do que do tipo N, o semicondutor será do tipo P. Isso implicará, contudo, na redução da Mobilidade dos Portadores.
A Mobilidade dos Portadores é a facilidade com que cargas n e p (elétrons e buracos) atravessam a estrutura cristalina do material sem colidir com a vibração da estrutura. Quanto maior a mobilidade dos portadores, menor será a perda de energia, portanto mais baixa será a resistividade.
Na região de contato das áreas, elétrons e lacunas se recombinam, criando uma fina camada praticamente isenta de portadores de carga, a chamada barreira de potencial, onde temos apenas os íons "doadores" da região N e os íons "aceitadores" da região P, que por não apresentarem portadores de carga "isolam" as demais lacunas do material P dos outros elétrons livres do material N.
Um elétron livre ou uma lacuna só pode atravessar a barreira de potencial mediante a aplicação de energia externa (polarização direta da junção). Aqui é preciso ressaltar um fato físico do semicondutor: nesses materiais, os elétrons só podem assumir determinados níveis de energia (níveis discretos), sendo as bandas de valência e de condução as de maiores níveis energéticos para os elétrons ocuparem.
A região compreendida entre o topo da de valência e a parte inferior da de condução é a chamada "banda proibida". Se o material semicondutor for puro, não terá elétrons nessa banda (daí ser chamada "proibida"). A recombinação entre elétrons e lacunas, que ocorre depois de vencida a barreira de potencial, pode acontecer na banda de valência ou na proibida. A possibilidade dessa recombinação ocorrer na banda proibida se deve à criação de estados eletrônicos de energia nessa área pela introdução de outras impurezas no material.
Como a recombinação ocorre mais facilmente no nível de energia mais próximo da banda de condução, pode-se escolher adequadamente as impurezas para a confecção dos LEDs, de modo a exibirem bandas adequadas para a emissão da cor de luz desejada (comprimento de onda específico).
Nenhum comentário:
Postar um comentário